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Abstract
1.	 The timing and duration of life-history stages (LHSs) within the annual cycle can 

be affected by local environmental cues which are integrated through endocrine 
signalling mechanisms and changes in protein function. Most animals express a 
single LHS within a given period of the year because synchronous expression of 
LHSs is thought to be too costly energetically. However, in very rare and extremely 
stable conditions, breeding and moult have been observed to overlap extensively 
in rufous-collared sparrows (Zonotrichia capensis) living in valleys of the Atacama 
Desert—one of the most stable and aseasonal environments on Earth.

2.	 To examine how LHS traits at different levels of organization are affected by en-
vironmental variability, we compared the temporal organization and duration of 
LHSs in populations in the Atacama Desert with those in the semiarid Fray Jorge 
National Park in the north of Chile—an extremely seasonal climate but with unpre-
dictable droughts and heavy rainy seasons.

3.	 We studied the effects of environmental variability on morphological variables 
related to body condition, endocrine traits and proteome. Birds living in the sea-
sonal environment had a strict temporal division of LHSs, while birds living in the 
aseasonal environment failed to maintain a temporal division of LHSs resulting in 
direct overlap of breeding and moult. Further, higher circulating glucocorticoids 
and androgen concentrations were found in birds from seasonal compared to ase-
asonal populations. Despite these differences, body condition variables and pro-
tein expression were not related to the degree of seasonality but rather showed a 
strong relationship with hormone levels.
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1  | INTRODUC TION

Organisms arrange the temporal expression of each life-history stage 
(LHS) of the annual cycle according to environmental cues such as 
photoperiod, rainfall, food availability and changes in ambient tem-
perature (Wingfield, 2008). The underlying physiological mechanisms 
such as endocrine traits and protein expression that coordinate the 
development, mature capability and termination of each stage of the 
annual cycle are reliant upon the predictability of these local factors 
(Wingfield et al., 2017). Thus, temporally appropriate expression of 
the annual stages allows animals to match their energetic expenditures 
with resource availability (Lack, 1954; Ashmole 1963, #712; Ricklefs, 
1980). For example, in seasonal environments birds coordinate mi-
gration and breeding to utilize seasonal peaks in primary productivity 
(Cornelius, Boswell, Jenni-Eiermann, Breuner, & Ramenofsky, 2013; 
Ramenofsky, Campion, Perez, Krause, & Nemeth, 2017; Slagsvold, 
1975). Considering that some stages of the annual cycle are associ-
ated with high energy costs, minimal overlap of LHSs of the annual 
cycle avoids detrimental energetic fitness costs (Echeverry-Galvis 
& Hau, 2012; Zera & Harshman, 2001;). In this study, we aimed to 
describe the effects of highly seasonal and aseasonal environments 
(i.e., variations on environmental heterogeneity) on physiology, mor-
phology and the timing and duration of their three LHSs (breeding, 
moult and winter). We were particularly interested in the roles of the 
endocrine system in regulating the breeding LHS as assessed by cir-
culating androgen concentrations and the ability of birds to cope with 
acute challenges indicated by fluctuations in plasma corticosterone 
concentrations. We also studied proteome dynamics by investigating 
chaperone and metabolic proteins. Finally, we investigated morpho-
logical traits such as body condition, pectoralis muscle profile, para-
site load, fat storage and haematocrit. This broad approach allowed 
for the identification of underlying themes associated with living in 
either a seasonal or an aseasonal environment across three major 
LHSs of the annual cycle. It also provided a better understanding of 
the integration and consistency in the response of multiple traits at 
different levels under different environmental conditions across the 
annual cycle in free-living birds.

Rufous-collared sparrows (Zonotrichia capensis) live both in the 
fertile aseasonal valleys of the Atacama Desert—the driest and oldest 
desert on Earth (Hartley, Chong, Houston, & Matter, 2005)—and in 
the semiarid highly seasonal region of Fray Jorge National Park in the 

north of Chile. These sites provide a natural study system to exam-
ine the functions and mechanisms associated with seasonality within 
the same study species. In the Arica region of the Atacama Desert 
(hereafter AR), populations of Z. capensis peruviensis are resident in 
year-round green riparian habitats along river valleys. Based on tem-
perature, humidity, precipitation, food and water supply, this popula-
tion experiences an extremely stable environment (Gonzalez-Gomez 
et al., 2013) (see below and Field Site description in Supporting 
Information). In our previous study, the rufous-collared sparrow in 
the Atacama Desert expressed three major LHSs in the annual cycle, 
but a large fraction of individuals showed overlap between breeding 
and moult year-round (Gonzalez-Gomez et al., 2013). The phenom-
enon of LHS overlap has been described elsewhere in the tropics 
which likely is an adaptive strategy for individuals in an environment 
with a constant supply of food, high predation rates and small clutch 
sizes (Foster, 1975a,b).

In contrast, the Z. capensis chilensis populations in the Fray Jorge 
National Park region (hereafter FJ) to the south experience a high 
degree of seasonality (Gutierrez et al., 2010) and environmental 
unpredictability such as extreme droughts and floods, associated 
with strong El Niño Southern Oscillation (ENSO). As a consequence 
of high seasonality, there is extreme variation in food availability, 
especially for granivorous and year-round resident animals, such 
as rufous-collared sparrows (Meserve, Vasquez, Kelt, Gutierrez, & 
Milstead, 2016) (see below and Supporting Information). It is possi-
ble for birds to raise two clutches at FJ, but this has not been consis-
tently studied (Pyle, Engilis, & Kelt, 2015).

The endocrine system is important for coordinating physio-
logical, behavioural and morphological changes, and its activity is 
linked to environmental conditions (Gonzalez-Gomez et al., 2013). 
Corticosterone (CORT), the main glucocorticoid in birds, at baseline 
levels contributes to the regulation of basic metabolic functions such 
as protein and lipid metabolism, water balance and glucose provi-
sioning to cells (Landys, Ramenofsky, Guglielmo, & Wingfield, 2004). 
During unpredictable perturbations of the environment, CORT lev-
els become elevated to promote rapid changes in physiology and be-
haviour that allow individuals to cope via activation of the emergency 
life-history stage (ELHS) (Wingfield et al., 1998). Elevated levels of 
glucocorticoids promote the rapid mobilization of energy reserves 
via gluconeogenesis, enhanced immune response and increase in for-
aging behaviour (Wingfield et al., 1998). The activation of the ELHS 

4.	 These results suggest that animals adjust to their environment through changes in 
behavioural and endocrine traits and may be limited by less labile traits such as mor-
phological variables or expression of specific proteins under certain circumstances. 
These data on free-living birds shed light on how different levels of life-history or-
ganization within an individual are linked to increasing environmental heterogeneity.
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can also interrupt the current LHS (i.e., abandon breeding), so that 
energy can be reallocated to prioritize immediate survival (Wingfield 
et al., 1998). We also assessed circulating testosterone (T) which 
strongly promotes the onset of breeding, territory acquisition and 
aggression, and sexual displays (Wingfield, 1984; Wingfield & Hahn, 
1994). Birds found in seasonal environments, such as FJ, tend to 
show very distinct and high amplitude peaks in T during the breed-
ing season (Garamszegi et al., 2008; Hau, Ricklefs, Wikelski, Lee, & 
Brawn, 2010), while birds in aseasonal environment show indistinct 
and low-amplitude T as breeding occurs nearly year-round (Goymann 
et al., 2004).

The cellular stress response in free-living birds and its relation 
to hormone levels across LHSs of the annual cycle in contrasting 
environments are not known. Therefore, it is unclear how the met-
abolic proteins related to fat accumulation may differ between sites 
with unique energetic challenges. To understand the interaction of 
the endocrine system with protein function across contrasting en-
vironments at AR and FJ, we assessed the blood proteome in both 
populations with emphasis on two groups of proteins: (a) chaper-
ones, which are particularly relevant to the adrenocortical stress 
response, preventing alterations in cellular homoeostasis (Garbuz 
& Evgen’ev, 2017); and (b) metabolism and fat storage-related pro-
teins, which could play a key role in energy demanding LHSs of 
the life cycle such as moult and breeding (Supporting Information 
Table S1).

We predicted that the degree of seasonality and predictability 
would influence energetic demand between the two sites, which in 
turn would be expressed across multiple levels of organization. It 
has been observed that birds inhabiting localities with low predict-
ability of rainfall and food abundance show higher ability to adjust 
their organ sizes and basal metabolic rate to these changes (Williams 
& Tieleman, 2000). In turn, this ability is associated with energy 
costs of maintenance and production of plastic structures (Piersma 
& Drent, 2003; Pigliucci, 2001). Rufous-collared sparrows occurring 
in habitats with high climatic variability, such as central Chile, show 
higher thermal acclimation via higher adjustments in basal metabolic 
rates, and also seasonal changes in organ sizes (Cavieres & Sabat, 
2008; Novoa, Veloso, LopezCalleja, & Bozinovic, 1996). Thus, we 
predicted FJ would be a more challenging environment where birds 
face a greater number of unpredictable perturbations over the an-
nual cycle. At AR where birds would experience lower energetic de-
mands due to stable biotic and abiotic conditions, we predicted much 
less temporal organization of LHSs as found by Gonzalez-Gomez 
et al. (2013). If rufous-collared sparrows are affected by seasonality 
in these environments, and AR represents a less energetic demand-
ing locality, we expected to confirm previous data (Gonzalez-Gomez 
et al., 2013) on year-round breeding and moult (and overlap of both 
cycles) in the highly aseasonal AR population, and find a strong tem-
poral division of the annual LHSs in the highly seasonal FJ. We pre-
dicted better body condition variables (i.e., body condition index, 
parasite load, muscle development, fat storage, haematocrit per-
centage), higher levels of baseline and stress-induced levels of CORT, 
higher T and higher degree of seasonal variation in hormone levels in 

FJ compared to AR. We also predicted that chaperone protein con-
centrations would be positively linked to baseline and stress-induced 
CORT levels irrespective of the locality. Additionally, metabolic pro-
tein concentrations would be positively linked to body condition and 
higher in the seasonal than in the aseasonal environment.

2  | METHODOLOGY

2.1 | Species and study site

Our study model was rufous-collared sparrow, Zonotrichia capensis, 
a species that inhabits a wide range of environments from Mexico 
to Cape Horn (Class, Wada, Lynn, & Moore, 2011). Our study in the 
Atacama Desert (18°20′S, 70°20′W) was conducted in two valleys 
near Arica, Azapa and Lluta (20 km apart), where variation in photo-
period, temperature and precipitation is low (Supporting Information). 
The subspecies here is Z.c. peruviensis. Although these desert valleys 
can be extremely hostile, fertile oasis exists due to riparian areas 
which have vegetation year-round. The water to promote high pri-
mary productivity comes from dense fog from the Pacific Ocean mov-
ing along the valleys every morning, and streams fed by snowmelt in 
the Andes year-round from ~6,500 m.a.s.l. These valleys also have 
intense agricultural activity providing high amounts of food for song-
birds, especially granivorous–omnivorous rufous-collared sparrows. 
All of these conditions along with stable climatic variables explain high 
densities of birds (0.83 ± 0.06 birds/hours of mist per netting; Ralph, 
1976) in comparison with other regions such as Fray Jorge.

The second site was near Fray Jorge National Park (30°30′S, 
71°35′W) in a semiarid region of north-central Chile just south of the 
Atacama Desert, where we worked in three valleys (not more than 
25 km apart), where the climatic variations are extreme. The sub-
species here is Z.c. chilensis. This region has experienced a decline of 
50% in rainfall in the past 50 years and has been subject to the three 
largest ENSOs of the past 100 years and have occurred since 1982 
(Gutierrez et al., 2010). During ENSO, the mean annual precipitation 
of 133 mm (mean, 1989 and 2008) increased to three- to fourfold 
(1991–92, 233–229 mm; 1997, 330 mm; 2000–2002, 236–339 mm; 
2004, 168 mm; 2006, 147 mm). This had large impacts on food abun-
dance through alterations in patterns of nutrient cycling and primary 
productivity (López-Cortés & López, 2004). In turn, insects and seed 
abundance were also extremely variable (De La Maza, Lima, Meserve, 
Gutierrez, & Jaksic, 2009; Meserve et al., 2016). These periods are 
separated by intense droughts (11 to 89 mm rainfall). Temperatures 
vary seasonally from daily maxima of 30.8 ± 0.16°C in summer to 
daily minima that can reach temperatures below freezing in winter. 
Approximately 90% of the rainfall occurs in winter (May–September), 
while summers are warm and dry (Kummerow, 1966). Vegetation is 
characterized by sclerophyllous and evergreen shrubs strongly de-
pendent on variable coastal fog (De La Maza et al., 2009; Meserve 
et al., 2016). This extreme variability probably influences the density 
of rufous-collared sparrows (0.30 ± 0.04 birds/hr of mist netting), 
which is 2.7 times lower than in our AR sampling site (see Supporting 
Information).
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2.2 | Stage of the annual cycle and morphometric 
measurements

Birds were passively captured (i.e., we did not use playbacks of 
vocalizations or any other attractants) using mist nets over 10-
day periods in each of the following months: March, July, October 
and December in 2015; and January, March and October in 2016. 
These months were chosen because they represent the four sea-
sons, austral fall, winter, spring and summer, in the seasonal FJ. 
Therefore, they are appropriate to compare and contrast timing of 
LHSs in the annual cycle and other variables between AR and FJ. 
Protocols for morphometrics and scoring the stage of the annual 
cycle have been previously described in detail (Gonzalez-Gomez 
et al., 2013). At capture, all birds were banded with uniquely num-
bered metal bands and we measured wing, tarsus and tail length 
(mm), and body mass (g). Reproductive status was assigned based 
on the presence or absence of a brood patch or cloacal protu-
berance. Birds were classified as in moult if more than 20% of 
body feathers or more than one primary flight feather was being 
replaced.

Multiple metrics of body condition were measured: (a) fat 
(0 = “no fat” to 6 = “heavy fat”) by visual inspection of subcu-
taneous fat in the furculum and abdomen; (b) pectoral muscle 
profile (0 = “prominent edge of the keel” to 4 = “fully developed 
muscle”; (c) parasite load (0 = “no parasites” to 4 = “heavy par-
asite load”) according to the amount of parasites (i.e., feather 
mites Amerodectes zonotrichiae, Llanos-Soto et al., 2017) found 
in flight feathers by visual inspection; and (d) haematocrit per-
centage. Considering these measurements are qualitative, all the 
body condition variables in this study were assessed by three 
observers who received the same training. We generated an in-
tegrated estimate of body condition using principal components 
analysis (see Statistical analyses). The use of size-corrected mass 
as an index of body condition can be problematic due to all the 
variables that can affect these measurements (Clancey & Byers, 
2014). However, we choose to use it considering our large sample 
size of free-living animals while controlling for variables such as 
season and stage in the annual life cycle. We did not attempt to 
use it as a proxy of survival or reproductive success in an evolu-
tionary framework.

2.3 | Blood sampling

We collected blood from the brachial vein using a 26-gauge needle 
and heparinized microhaematocrit tubes. Within 3 min of capture, 
we collected the first sample for baseline CORT and within 10 min of 
capture for the individuals in those we measured T. To assess stress-
induced levels of CORT, we took a second blood sample after 30 min 
of standardized restraint by placing birds in a small cloth bag (here-
after “handling time”) (Breuner, Wingfield, & Romero, 1999). The 
total amount of blood collected was less than 1% of the bird’s mass. 
Samples were kept on ice (maximum of 4 hr) until they were centri-
fuged for 5 min at 2,000 × g to separate plasma and red blood cells. 

Haematocrit was measured in the first sample tube. Then, plasma 
was aspirated and stored frozen (at −20°C) until analysis.

2.4 | Endocrine analyses

Plasma concentrations of T and CORT were determined using radio-
immunoassays (RIA) (Wingfield, 1984). A detailed description of RIA 
is presented in Supporting Information. The mean detection limits of 
the assay were 8.60 pg/tube. A total of four assays were run for T 
and eight for CORT. Intra-assay variation ranged from 1.7% to 3.2% 
for T, and recoveries were 78.9 ± 0.39%. For CORT, intra-assay vari-
ation ranged from 1.76% to 2.9%, and recoveries were 85.6 ± 0.38%. 
Interassay variation was 2.13% for T and 2.11% for CORT. The an-
tibody was validated by checking for parallelism between diluted 
plasma pool that was spiked with a known amount of corticosterone 
and the standard curve. All samples were run in duplicate.

2.5 | Proteomics

Plasma proteome was analysed in 18 birds (AR N = 9, FJ N = 9) col-
lected in March 2015. Plasma proteins were extracted and trypsin-
digested as previously described (Kültz et al., 2015). Tryptic peptides 
were separated by nano-ultra-high-performance liquid chromatog-
raphy (UPLC) (Waters) using a 5–35% acetonitrile gradient over a 
2-hr retention time period and injected online into an Impact-HD 
UHR-qTOF mass spectrometer (Bruker Daltonics). Following elec-
trospray ionization, peptides were identified using data-independent 
acquisition and tandem mass spectrometry as previously described 
(Kültz, Li, Gardell, & Sacchi, 2013). Label-free quantification was per-
formed using peaksq 8.0 for an MS1 Top3 approach and scaffold 4.8 
for a spectral counting approach as previously described (Kültz et al., 
2013, 2015). More details on methodology and parameters used for 
quantitative proteomics are provided in Supporting Information. 
The dataset and results of PEAKSQ and Scaffold analyses are pub-
licly accessible at the CAMP Proteome Repository, Massive and 
ProteomeXchange (see the Data Accessibility section for accession 
numbers and links).

2.6 | Statistical analyses

As there was no effect of study site within AR (N = 2) or FJ (N = 3) 
localities, the data were pooled to increase statistical power. 
Differences in the timing of LHSs of the annual cycle, and body 
condition variables such as fat, muscle and parasite scores, across 
the year in AR and FJ were tested using an ordinal logistic model 
(OLM), as the response variables were qualitative. Bayesian infor-
mation criterion (BIC) and maximum-likelihood (Akaike informa-
tion criterion corrected for sample size, AICc) estimation methods 
were used to evaluate the best of three ordinal logistic models to 
explain timing of moulting and breeding LHSs based on the inde-
pendent variables of month, locality (i.e., AR, FJ) and their interac-
tion. Contingency analysis was used to analyse differences in the 
selected model. Body condition index was estimated performing 
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a principal components analysis (PCA) including tarsus, tail and 
wing lengths by locality. The first component explained 48.4% and 
50.7% of the variation in AR and FJ, respectively (see Supporting 
Information). Then, the first principal component was regressed 
against body mass for each locality (Atacama Desert, r2 = 0.03, 
F1,780 = 32.07, p < 0.01; Fray Jorge, r2 = 0.01, F1,222 = 27.82, 
p = 0.022), and the residuals of these regressions were used as 
body condition index for each locality. The effects of sampling 
month, locality and LHS cycle on body condition index and haema-
tocrit were assessed with a generalized linear model (GLM). The ef-
fect of handling time, sampling month and locality on CORT levels 
was assessed through two-way repeated-measures analysis of var-
iance (RMANOVA). The relationship between body condition index 
and baseline or stress-induced CORT was assessed using linear re-
gressions. To explore the relationships of locality, sampling month 
and their interaction on testosterone levels, we performed a two-
way ANOVA. The association of LHS of the annual cycle on tes-
tosterone levels was assessed through one-way ANOVAs. Tukey’s 
multiple comparisons (honest significant differences) for different 
sample sizes were used for post hoc tests. The relationships be-
tween hormone levels and body condition variables were assessed 
through ordinal logistic models. The relations between proteins 
and body condition index and baseline and stress-induced levels 
were assessed using GLM with normal and exponential distribution 
and identity or reciprocal links alternatively. We compared the per-
formance of these models against a null model with no independ-
ent variable using AIC. Statistical analyses were performed with 
jmp®, Version 10.0 (SAS Institute Inc., Cary, NC, USA 1989–2007).

All the quantitative analyses to compare the proteome be-
tween localities have been statistically corrected for multiple 
testing. PEAKSQ quantification was performed via two statisti-
cal procedures: (a) the MaxQuant algorithm (Cox & Mann, 2008) 
and (b) ANOVA with Benjamini–Hochberg correction (Benjamini & 
Hochberg, 1995). Scaffold analysis was performed using t test with 
Benjamini–Hochberg correction (Benjamini & Hochberg, 1995). 

Out of the 18 birds with proteomics data, 12 also had CORT data to 
assess the relation between HSP and baseline and stress-induced 
levels of CORT.

3  | RESULTS

During 2015 (N = 363) and 2016 (N = 239), we captured a total of 
602 individuals, in two localities: Arica valleys (AR) and the area 
near Fray Jorge National Park (FJ). Sample sizes in relation to sea-
son were as follows: March (AR N = 60, FJ N = 24), June/July (AR 
N = 47, FJ N = 38), October (AR N = 44, FJ N = 14) and December 
(AR N = 67, FJ N = 79) in 2015; and January (FJ N = 39), March (AR 
N = 57, FJ N = 60) and October in 2016 (AR N = 78, FJ N = 5). In the 
few cases of recapture, we only used data from the first capture in 
the analyses. We combined these data with our previous data from 
AR (Gonzalez-Gomez et al., 2013) to have larger sample size (Total 
N = 1059) when analysing stage of the annual cycles and hormone 
levels (see below).

3.1 | Timing of life-history stages in birds 
experiencing different degrees of environmental 
heterogeneity

LHSs of the annual cycle were affected by month (likelihood ratio 
chi-square, G2

4,1001
 = 225.16, p < 0.01), locality (likelihood ratio chi-

square, G2

1,1024
 = 11.75, p < 0.01) and their interaction (likelihood 

ratio chi-square, G2

1,1024
 = 59.16, p < 0.01). Paired contingency analy-

sis indicated that the proportion of birds in each LHS of the annual 
cycle varied across all months (Figure 1).

Timing of the breeding LHS was affected by month (likelihood 
ratio chi-square, G2

4,1024
 = 297.25, p < 0.001) and locality (likelihood 

ratio chi-square, G2

4,1024
 = 21.35, p < 0.001). Breeding LHS in both 

localities peaked during October when approximately 80% of indi-
viduals were breeding in AR and 92% in FJ. In contrast, during March 

F IGURE  1 Timing of life-history stages in Zonotrichia capensis in the aseasonal Atacama Desert (a) and in the seasonal Fray Jorge National 
Park area (b). White: nonmoulting, nonbreeding (NM/NB); grey: moulting, nonbreeding (M/NB); white with black stripes: nonmoulting, 
breeding (NM/B); and dark grey: overlapping moult and breeding
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26% of the individuals were breeding in Arica and 0% were in FJ 
(Figure 1).

Moult was affected by month (likelihood ratio chi-square, 
G2

4,1000
 = 129.76, p < 0.001) and locality (likelihood ratio chi-square, 

G2

4,1000
 = 4.15, p = 0.004). In FJ, birds moulted between January and 

March, while in AR, bird moulted year-round, although we found a 
higher proportion of birds moulting in March (Figure 1).

The proportion of birds overlapping moult and breeding 
was 27 times higher in AR than in FJ (likelihood ratio chi-square, 
G2

1,843
 = 37.93, p < 0.001). Overlap was not significantly different 

across sampling months in AR, and it was coincident with the breed-
ing season in FJ (Figure 1).

3.2 | Body condition

The BIC and AIC methods performed similarly when we analysed the 
effect of locality (FJ, AR), month and LHSs (i.e., moulting, breeding, 
nonmoulting nonbreeding, overlapping moult and breeding) on body 
condition.

Fat Score. The best model included month and locality 
(AIC = 1318.23). Fat scores were affected by locality (OLM, 
�
2

1,510
 = 10.83, p < 0.001) and sample month (�2

4,510
 = 59.51, p < 0.01), 

but the interaction was not significant (�2

4,510
 = 0.41, p = 0.93). The 

highest fat scores were recorded in FJ during winter when birds 
were not moulting and not breeding (NM/NB) (Figure 2).

For pectoralis muscle score, the model including sampling month 
performed significantly better than the model including stage of the 
annual cycle and the interaction between these variables. Pectoralis 
muscle score increased during winter (birds NM/NB) in both locali-
ties (OLM, �2

4,509
 = 72.79, p < 0.01; Figure 2).

When we analysed parasite load score, both BIC and AIC esti-
mation methods performed best when locality and sampling month 
were included. Birds had a higher parasite load in FJ than in AR (OLM, 
�
2

1,508
 = 112.68, p < 0.01) and during winter months (�2

4,508
 = 65.26, 

p < 0.01; Figure 2).
Haematocrit levels were higher in FJ than in AR (GLM 

�
2

1,495
 = 25.19, p < 0.001; Figure 2), but followed the same seasonal 

pattern with higher levels during the winter (Jun/July) and lower 

F IGURE  2 Zonotrichia capensis fat score (a), muscle score (b), parasite load (c) and haematocrit percentage (d) across the year in the 
seasonal Fray Jorge (FJ) and aseasonal Atacama Desert (AR) areas. Tukey’s HSD post hoc tests, significant differences shown in letters 
(p < 0.05). Numbers below the axis indicate samples sizes for each group
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levels in the austral summer in both localities (GLM �2

4,492
 = 20.49, 

p < 0.001). We found no interaction between month and locality 
(GLM �2

3,493
 = 2.98, p = 0.39).

When we analysed the effect of LHS of the annual cycle on 
body condition index, we observed birds in better body con-
dition in FJ (2.589 ± 0.15) than in AR (−2.05 ± 0.06, mean ± SE, 
GLM �2

1,996
 = 3.99, p = 0.045; Figure 3), especially during January 

(0.59 ± 0.2) in comparison with March and October (−0.28 ± 0.10 
and −0.32 ± 0.12, respectively, GLM �2

4,996
 = 29.03, p < 0.001). We 

also found an interaction between locality and sampling month 
(GLM �2

4,996
 = 23.80, p < 0.001). Remarkably, birds that overlapped 

moult and breeding in AR had significantly better body condition 
index than birds in other activity categories. We observed a marked 
negative effect of moult on body condition in both populations 
(F3,987 = 4.32, p = 0.004).

3.3 | Hormone levels

3.3.1 | Corticosterone

Baseline CORT levels were not different across localities (RMANOVA 
F1,352 = 0.31, p = 0.57; Figure 4), months (RMANOVA F1,352 = 1.43, 
p = 0.22; Figure 4) or their interaction (RMANOVA F1,352 = 0.19, 
p = 0.94; Figure 4). Stress-induced CORT levels were higher in FJ 
compared to AR (RMANOVA F1,352 = 33.40, p < 0.001; Figure 4) 
and were higher in October than in the rest of the sampling months 
(F1,352 = 22.88, p < 0.01). Handling time affected stress-induced 
CORT levels (F1,352 = 400.17, p < 0.001) but interacted with sam-
pling month (F4,352 = 5.01, p < 0.001) and location (F1,352 = 38.075, 
p < 0.01; Figure 4). Stress-induced levels in FJ, specifically in October, 
were significantly higher than stress-induced levels in AR (Figure 4).

Baseline CORT levels were similar between birds that were 
moulting and those that were not moulting across the year (GLM 
�
2

1,199
 = 1.035, p = 0.30), irrespective of the locality. We found a 

positive relationship between breeding condition and baseline CORT 
levels (F1,197 = 24.16, p < 0.01; Figure 4), but this relationship was 
stronger in FJ than in AR (F1,199 = 39.81, p < 0.001). Stress-induced 
CORT levels were similar between birds that were moulting and those 
that were not moulting across the year (GLM �2

1,199
 = 2.53, p = 0.11), 

irrespective of the locality. As expected, we found a positive rela-
tionship of breeding LHS and stress-induced levels (F1,197 = 58.71, 
p < 0.01; Figure 4) regardless of locality (F1,199 = 3.65, p = 0.057) or in-
teraction between locality and breeding LHS (F1,199 = 0.41, p = 0.52).

We also found a negative relationship between baseline CORT 
and body condition (R2 = 0.11, F1,358 = 4.84, p = 0.02). Parasite score 
had a positive significant relationship to CORT levels (RMANOVA, 
F4,180 = 3.02, p < 0.05), but we found no significant relation to location 
(F1,333 = 0.49, p = 0.48) nor of the interaction between parasite score 
and location (F1,176 = 1.01, p = 0.40). Fat and muscle scores had no 
relationship to CORT levels (all p > 0.05). None of these variables had 
a significant association with baseline levels of CORT (all p > 0.05).

3.3.2 | Testosterone

T levels were not different among sampling months (�2

1,392
 = 29.15, 

p < 0.01), and with the interaction between month and locality 
(�2

1,392
 = 11.88, p < 0.01; Figure 5a). When we included LHS of the an-

nual cycle, T levels were significantly higher during the reproductive 
season in FJ but not in AR (�2

1,384
 = 9.96, p < 0.01) (Figure 5b). We did 

not find an association of body condition on T levels (F1,356 = 0.26, 
R2 = 0.01, p = 0.61), or the interaction between condition and lo-
cality (GLM �2

1,356
 = 0.05, p = 0.81). Fat and muscle scores were not  

related to T levels (all p > 0.05).

3.4 | Proteomics

Using proteomics analysis, we identified a total of 215 pro-
teins in plasma, of which 42 proteins differed between AR and 

F IGURE  3 Body condition index in relation to sampling month (a) and life-history stage (b) in rufous-collared sparrows in the seasonal 
Fray Jorge (FJ) and the aseasonal Atacama Desert (AR). Tukey’s HSD post hoc tests, significant differences shown in letters
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FJ. Visualization of the proteins can be found in the heat map 
(Supporting Information Figure S1).

For chaperone protein data, other than adenylate kinase which 
showed higher concentrations in FJ, we did not find any differ-
ences related to locality (Table 1). We also found no differences 
between localities for metabolic and endocrine-regulatory pro-
teins (Table 1).

We found that the circulating concentrations of HSC71 and 
HSP90 were negatively and exponentially related to baseline levels 
of CORT (Table 2; Figure 6). Stress-induced levels of CORT showed a 
positive and linear relationship with adenylate kinase and a positive 
and exponential association with histone-lysine (Table 2).

Metabolic and endocrine-regulatory proteins were also re-
lated to body condition (Table 3). StAR was expressed in blood 

in 50% of the individuals, and it had a positive exponential and 
linear relationship to body condition, although the exponential fit 
was better. Both baseline and stress-induced CORT levels were 
related to StAR, although negative in the former and positive in 
the latter.

Interestingly, in the chaperone group of proteins such as ade-
nylate kinase, they were marginally related to heat-shock proteins 
(Table 3). In the group of metabolic and endocrine-regulatory HSC71 
and HSP90, they were positively both linearly and exponentially re-
lated to creatine kinase (Table 3).

4  | DISCUSSION

In this study, we assessed the association of seasonality (i.e., 
environmental heterogeneity) on annual LHSs, body condition, 
hormone levels and the proteome. We expected strong seasonal 
patterns in all of these aspects in the variable environment (FJ), 
and an aseasonal pattern in the Atacama Desert (AR) where the 
environmental variation across the year is extremely low. We 
observed a strong relationship between seasonality and the ex-
pression of LHSs and hormone levels, only. The proteome and 
morphological body condition variables were linked to individual 
physiological variables rather than degree of seasonality.

4.1 | Timing of life-history stages

Across the distribution of rufous-collared sparrows, there are 
varying degrees of seasonality, and as a result, different pat-
terns of timing and duration of their stages of the annual cycle 
(Class et al., 2011). In the aseasonal environment (AR), we found 
breeding and moult LHSs occurred year–round, and for some in-
dividuals, these stages were coexpressed. Despite a lack of strong 
seasonal signals, we observed individuals in different LHSs of the 
annual cycle across the year but with a higher percentage of birds 
breeding in October and moulting in March, indicating a weak 
seasonal pattern. We also found heavy overlap between moult 
and breeding (Figure 1). In contrast, we observed a strong division 
of LHSs of the annual cycle in the highly seasonal environment 
at FJ, when most of the birds were breeding between October 
and December, moulted in January and started wintering towards 
March, presumably avoiding the high costs of overlapping LHSs of 
the annual cycle (Johnson, Stouffer, & Bierregaard, 2012). Similar 
to our observations in FJ, most of the studied populations of 
Z. capensis show breeding and moulting stages of the annual cycle 
in separate seasons once a year (Davis, 1971; King, 1973; Miller, 
1959; Moore, Bonier, & Wingfield, 2005; Wolf, 1969), although 
high-altitude populations in Colombia can moult and breed twice 
a year, but overlap was not observed (Miller, 1962). Challenging 
this idea, five individuals at the seasonal environment (FJ) over-
lapped breeding and low rate moult, while no other instances of 
overlap of stages of the annual cycle were observed. However, 
overlapping has never been described outside of the extremely 

F IGURE  4 Stress-induced and baseline CORT levels of 
rufous-collared sparrows across the (a) year and (b) life-
history stage activities (NM/NB = nonmoulting/nonbreeding; 
M/NB = moulting/nonbreeding; B/NM = nonmoulting/breeding; 
Overlap = overlapping moult and breeding) in the aseasonal 
Atacama Desert (AR) and the seasonal Fray Jorge (FJ). Tukey’s HSD 
post hoc tests, significant differences shown in letters. Sample sizes 
are shown for each location
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aseasonal AR sites (Gonzalez-Gomez et al., 2013). In other spe-
cies, moult and breeding overlap has been described in numerous 
tropical species (Foster, 1975b), and it seems to be adaptive under 
certain conditions, such as small clutch sizes, high and constant 
food supply, long breeding seasons and probably high nest preda-
tion rates (Foster, 1975a). Although our results support the idea 
that energy restrictions are an important modulating factor in the 
timing and duration of stages of the annual cycles in these popu-
lations, mores studies assessing clutch size, and nest success rate 
in individual birds, are needed to determine the net effect of both 
strategies (overlap versus nonoverlap) on fitness.

4.2 | Body condition
In general, we found a stronger link between body condition and 
the time of year as opposed to the degree of seasonality. The de-
gree to which seasonality affects this is open to interpretation at 
AR. Fat scores peaked in the austral winter at both localities, al-
though greater fat scores were measured in birds from the sea-
sonal environment (FJ) than in the aseasonal environment (AR). 
Many bird species follow this pattern, depositing fat reserves dur-
ing nonbreeding LHSs, and depleting them during breeding season 
(Williams, 2012), although more so in environments with greater 
seasonality (Rogers & Smith, 1993). Remarkably, despite the ex-
tremely low seasonality that birds in AR experience, they followed 
the same pattern, although attenuated. It is possible that minimal 
changes in temperature or changes in the annual photoperiod trig-
ger hyperphagia and increase fat storages, but more studies are 
necessary to clarify this.

Pectoralis muscle score also followed a seasonal (time of year) 
pattern, with marked peaks during the reproductive season, al-
though higher in the seasonal (FJ) than in the aseasonal environment 
(AR). At least in FJ, this could be a result of the increases in circulating 
androgens during the reproductive season (Ramenofsky & Nemeth, 

2014). However, birds in AR showed an increase in pectoralis muscle 
despite undetectable changes in T levels (see below), which suggests 
that other mechanisms could be acting, such as seasonal expression 
of androgen receptors and metabolizing enzymes in relation to cir-
culating androgens (see Refs).

Parasite score had higher peaks during winter and spring in 
FJ, and lower values in summer. Coincidently, several studies 
have shown a peak in ectoparasite abundance during breeding 
season, most likely because feather mites in birds are commonly 
transmitted from parents to nestlings (Harbison, Bush, Malenke, 
& Clayton, 2008). Lower parasite loads during the summer at FJ 
can be explained because mite infections are restricted by feather 
lost during prebasic moult (Moyer, Gardiner, & Clayton, 2002), 
and lower humidity (Moyer, Drown, & Clayton, 2002). In contrast, 
these factors do not explain seasonality in feather mite abun-
dance in the arid and aseasonal environment in the AR. Further 
studies are needed to investigate parasite load variations in AR 
birds.

Haematocrit levels followed a marked seasonal pattern in both 
localities, with higher peaks in birds wintering, although absolute 
levels were higher in FJ than in AR (Figure 2). Previous studies 
have found higher haematocrit levels during the winter LHS in sea-
sonal environments, most likely associated with enhanced oxygen 
uptake due to increased thermogenesis (Fair, Whitaker, & Pearson, 
2007; Krause et al., 2016). In our study where both subspecies are 
resident, we found higher values in general and variations of ~12% 
in the seasonal FJ, similar to variations in migratory white-crowned 
sparrows (Krause et al., 2016), which could be explained by the 
strong variations in temperature that these birds experience in FJ. 
It is remarkable that birds in the AR population follow an appar-
ent seasonal pattern, even when the variations in temperature are 
minimal. Body condition index was strongly associated with LHS 
of the annual cycle with moult and wintering birds in lower body 
condition coincident with higher values of haematocrit percentage 

F IGURE  5  (a) Testosterone levels across sampling months in the aseasonal Atacama Desert (AR) and the seasonal Fray Jorge (FJ). (b) 
Testosterone levels across life-history stage (NM/NB = nonmoulting/nonbreeding; M/NB = moulting/nonbreeding; M/B = nonmoulting/
breeding; Overlap = overlapping moult and breeding). Tukey’s HSD post hoc tests, significant differences shown in letters
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during the wintering (LHS). Interestingly, we found that birds over-
lapping moult and breeding, especially in the aseasonal AR site, 
had higher body condition than birds just breeding, suggesting that 
this phenomenon is associated with the lack of energy constraints.

4.3 | Hormone levels

We observed no differences between baseline levels of CORT 
across the year or between our sites. In contrast, we found lower 
plasma stress-induced levels of CORT in the aseasonal (AR) than 
in the seasonal environment (FJ). This could be related to the 
stable conditions at AR, implying lower energy challenges than 

for birds inhabiting more heterogeneous environments such as 
FJ (Cavieres & Sabat, 2008). In the Northern Hemisphere, stud-
ies have found that individuals at sites with more benign condi-
tions often have lower corticosterone levels than those at sites 
exposed to harsher condition (Addis, Davis, Miner, & Wingfield, 
2011; Boelman et al., 2015; Krause, McGuigan, Bishop, Wingfield, 
& Meddle, 2015; Krause, Meddle, & Wingfield, 2015; Walker 
et al., 2015; Wingfield, Kubokawa, Ishida, Ishii, & Wada, 1995; 
Wingfield et al., 2015). However, in some species inhabiting 
harsh environments such as the arctic where the breeding season 
is short, CORT levels are low during the parental care, most likely 
to preserve the only possible reproductive attempt (O’Reilly & 

TABLE  1 Metabolic and chaperone proteins in two populations of rufous-collared sparrows

Protein Function
Locality  
df = 11, N = 12

Metabolic proteins Apolipoprotein Lipid transport AR = 14,961.7 ± 5,136.2 
FJ = 25,905.7 ± 7,581.2 (mean ± SE)  
t = 1.19, p = 0.12

Steroidogenic acute regulatory 
protein (StAR)

Role in the production of 
steroid hormones

AR = 2,443.3 ± 1,986  
FJ = 21,285.7 ± 13,686 (mean ± SE)  
t = 1.36, p = 0.11

Creatine kinase Energy reserves AR = 826.66 ± 2,024.91  
FJ = 934.857 ± 410.05 (mean ± SE)  
t = 0.11, p = 0.45

Albumin Fatty acid transport AR = 7,078,333.0 ± 1,127,810.3  
FJ = 5,088,571 ± 720,691.41 (mean ± SE)  
t = 7.78, p = 0.08

Fatty acyl-CoA hydrolase Fatty acid metabolism AR = 1,795.17 ± 621.775 
FJ = 730.86 ± 276.24 (mean ± SE)  
t = −1.51, p = 0.08

L-Lactate dehydrogenase Glycolysis AR = 643.33 ± 416.24  
FJ = 762.42 ± 295.53 (mean ± SE)  
t = 0.23, p = 0.41

Glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH)

Glycolysis AR = 2,605 ± 1,589.81  
FJ = 1,643.57 ± 1,439.7 (mean ± SE)  
t = −1.13, p = 0.85

HSC71 Folding protein stability AR = 2,603.15 ± 1,233.70  
FJ = 1,825.02 ± 574.00 (mean ± SE)  
t = −0.57, p = 0.70

Chaperone proteins HSP90 Folding protein stability AR = 2,492.66 ± 1,589.81  
FJ = 1,514.25 ± 575.2 (mean ± SE)  
t = −0.49, p = 0.68

Ankyrin repeat domain Folding protein stability AR = 548,200 ± 403,886  
FJ = 181,857 ± 403,886 (mean ± SE)  
t = −0.87, p = 0.78

Adenylate kinase Cellular energy homoeostasis AR = 563.67 ± 371.21  
FJ = 5,108.57 ± 1,838.30 (mean ± SE)  
t11 = 2.02, N = 12, p = 0.043

Histone-lysine 
N-methyltransferase

Epigenetic gene regulation AR = 83,828 ± 63,240  
FJ = 151,264 ± 88,909 (mean ± SE)  
t = 0.61, p = 0.27

DNA mismatch repair protein 
Msh6

DNA repair AR = 201,780 ± 67,803  
FJ = 98,200 ± 28,102 (mean ± SE)  
t = −1.41, p = 0.89

Significant results are shown in bold.
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Wingfield, 2001). This example highlights the necessity to meas-
ure CORT levels at different times during the reproductive season, 
and, in future studies, follow individuals through the year. We also 
found seasonal variations in stress-induced levels of CORT in AR 
as well as in FJ, with higher levels during the reproductive season. 
However, birds in the seasonal environment had greater varia-
tion in plasma levels of CORT through the year compared to the 
aseasonal environment. Variations in CORT levels across the year 
were expected (Ramenofsky et al., 2017), allowing birds to modu-
late their breeding season, and improve their reproductive suc-
cess depending on local conditions (Goutte, Antoine, & Chastel, 
2011; Schoech, Rensel, Bridge, Boughton, & Wilcoxen, 2009). 
In particular, our findings in the seasonal FJ site are coincident 
with higher levels of CORT during breeding season in comparison 
with other life cycles in nonmigratory species (Lattin, Breuner, & 
Romero, 2016). In the aseasonal AR site, we also observed a peak 
of CORT in October which aligned with the high proportion of 
birds breeding at this time of the year. However, when individuals 
were grouped per LHS and stress-induced CORT levels compared, 
we observed no significant differences, implying that in October 
birds have higher levels of CORT regardless of their breeding sta-
tus, although more studies are needed to elucidate this finding.

Although in both localities we found that CORT levels signifi-
cantly decreased during moult in comparison with other cycles, 
birds did not completely suppress the stress response (i.e., stress-
induced levels of CORT were still significantly higher than baseline 
levels). In seasonal environments, the suppression of the stress 
response during moult has been commonly observed (Astheimer, 
Buttemer, & Wingfield, 1994; Cornelius, Perfito, Zann, Breuner, 
& Hahn, 2011; Romero, Strochlic, & Wingfield, 2005), most likely 
because higher levels of CORT could have negative impacts on 
feather quality (Cornelius et al., 2011). Equatorial populations 
of Z. capensis with long moult periods have similar patterns to 
birds at the AR and FJ sites where they exhibited lower levels of 
CORT during moult in comparison with other LHSs of the annual 
cycle, although they did not suppress the stress response (Wada, 
Moore, Breuner, & Wingfield, 2006). In our study, we did not mon-
itor individual birds, but we observed moult year-round in AR and 
from January through March in FJ, suggesting that moult could 
be spread over three months. Therefore, the cost of moult could 
be lower than in other localities, and presumably the cost of sup-
pressing stress response for a long period of time could be high. 
Interestingly in the seasonal FJ site, birds moulted during the dri-
est and warmest period of the year, forcing birds to move longer 
distances to unfamiliar sites to find water (P. L. Gonzalez-Gomez, 
personal observation). In this context, birds could face numerous 
unpredictable events ranging from drought to novel predators, 
to competitors, and therefore, the complete suppression of the 
stress response could be detrimental. Further research is needed 
to determine whether there are variations in receptors or carri-
ers such as corticosteroid-binding proteins across the year, and/
or local variations in sensitivity of feather follicles to prevent the 
detrimental effects of CORT on feather quality.

The testosterone data were consistent with our finding 
of a defined breeding season in FJ, where we found a peak in 
plasma T levels during the reproductive season. This pattern of 
seasonal modulation of T has been described in many species 
inhabiting seasonal environments (Goymann & Landys, 2011; 
Wingfield, 1984), where higher levels of T allow males to acquire 
resources to attract mates and develop secondary sexual traits 
(Wingfield, Hegner, Dufty, & Ball, 1990). In contrast, in AR we 
observed lower and not variable levels of T year-round, which is 
consistent with birds breeding across the year, a pattern that is 
most likely driven by environmental homogeneity rather than the 
annual photoperiod as shown in more temperate species (Hau 
et al., 2010).

4.4 | Proteomics

Overall, roughly 20% of the blood proteome showed differences be-
tween localities. With the exception of adenylate kinase, we did not 
find differences between localities in the concentration of proteins 
related to metabolic and regulatory functions or chaperone proteins. 
Adenylate kinase is an enzyme that plays a key role in regulation of 
cellular energy state under different metabolic stresses by monitoring 

F IGURE  6 The relationship between heat-shock proteins 70 and 
90 and baseline corticosterone levels in Zonotrichia capensis
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and altering the levels of ATP, ADP and AMP, and triggering cascade 
effects, such as the stimulus of AMP-dependent receptors linked to 
glycolytic pathways (Dzeja & Terzic, 2009). Consistent with our hy-
pothesis, we found higher adenylate kinase in individuals in FJ than 
in AR. Adenylate kinase was also positively related to stress-induced 
levels of CORT. Thus, the upregulation of this protein in the more chal-
lenging seasonal environment of FJ is consistent with the idea that this 
protein could act as primary stress-response pathway (Kong, Binas, 
Moon, Kang, & Kim, 2013) by receiving direct cues from the cellular 
environment (i.e., phosphate nucleotide levels) and indirect cues from 
increased CORT levels avoiding eventual ATP depletion and promoting 
energy balance under stressful unpredictable events.

We identified that heat-shock protein 70 (HSP70) and heat-
shock protein 90 (HSP90), which are involved in functions such as 
protein folding and signal transduction, were negatively correlated 
with plasma glucocorticoids (Garbuz & Evgen’ev, 2017). HSP70 is 
expressed constitutively and under normal conditions acts as an 
ATP-dependent molecular chaperone assisting multiprotein com-
plex assemblages and transport of proteins across cellular mem-
branes (Jego, Hazoume, Seigneuric, & Garrido, 2013; Shi & Thomas, 
1992). HSP90 is inducible and it binds prefolded or fully folded 
proteins and helps them to achieve or maintain tertiary structures 
(Grad & Picard, 2007). In mammals, the relation between HSPs and 
plasma levels of CORT is mediated by the low-affinity glucocor-
ticoid receptors (GR) and the high-affinity mineralocorticoid re-
ceptors (MR) (Breuner & Orchinik, 2001; Landys, Ramenofsky, & 
Wingfield, 2006; Landys et al., 2004). In the absence of hormone, 
GR and MR are thought to be primarily located in the cytoplasm 
as part of hetero-oligomeric complexes that contain HSP90 and 
HSP70, which are pivotal in the maturation processes and biolog-
ical actions of these receptors (Grad & Picard, 2007). It has been 
argued that MR and GR have differential roles in the regulation of 
CORT signalling, where MR is activated at low CORT levels and GR 
is activated only after CORT levels rise (Joels, Karst, DeRijk, & de 
Kloet, 2008). Although in humans stress-induced levels of HSP90 
were correlated with GR (Matic et al., 2014), we did not find stress-
induced levels of CORT related to HSP90. This could be a result of 
our small sample size, more complex interactions with cochaper-
ones (Bimston et al., 1998), or differential regulation of receptors 
and hormone levels, which has been shown in birds (Breuner & 
Orchinik, 2001; Landys et al., 2006). Our finding that HSP90 and 
HSC70 were negatively related to baseline levels of CORT is coun-
terintuitive and likely related to the interaction between MR, HSP 
and cochaperones, but further studies are necessary.

We also found HSP70 and HSP90 positively related to lev-
els of creatine kinase, which was expected considering that both 
HSP70 and HSP90 are ATP-dependent proteins (Mayer & Bukau, 
2005), and creatine kinase regulates cellular energy reservoirs 
(Arakawa et al., 2016). In our study, this protein was also related 
to baseline levels of CORT and body condition, which was also 
consistent with its role in cellular energy supply.

Our findings of nonsignificant differences in the expression of 
certain proteins between AR and FJ could suggest less flexibility G
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in these traits; however, our results need to be interpreted with 
caution. On the one hand, our sample size was small, we used one 
tissue, and we did not assess changes in the proteome across the 
year. It could be that differences are higher during the reproduc-
tive season when CORT and T levels were higher in FJ than in AR.

4.5 | Integration of proteome, behavioural  
and endocrine traits under different environmental  
conditions

Our results suggest that environmental heterogeneity (i.e., sea-
sonality as well as unpredictable climatic events) could be a 
strong modulator of endocrine and behavioural traits such as 
timing and duration of LHSs over annual cycles, through cor-
related levels of CORT and T. In contrast, morphological traits 
such as body condition variables and protein expression showed 
very little or no relationships to seasonality but revealed stronger 
correlations with physiological traits or other protein levels. It is 
possible that organisms use labile responses, such as behaviour 
and endocrine responses, to inhabit harsh unpredictable environ-
ments, and might be more limited by less flexible traits such as 
morphology. In this regard, we could expect a new scenario of 
selective pressures, where more flexible phenotypes would be 
possibly selected.

In the context of increasing unpredictable events in frequency 
and magnitude linked to global change, coping strategies will be 
likely shaped by the trade-off between each level of organiza-
tion (LHSs of the annual cycle) and flexibility in timing and dura-
tion (overlap) of LHSs. The results of this comprehensive study 
showed the complexity of responses at organism level, and it is a 
preliminary approach to integrative studies in free-living animals.
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